Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Adv Exp Med Biol ; 1395: 205-209, 2022.
Article in English | MEDLINE | ID: covidwho-2310010

ABSTRACT

The Internet of Medical Things (IoMT) system plays a role in various areas of social activity, including healthcare. Telemetry of cardiovascular function, such as blood pressure and pulse, in daily life is useful in the treatment of cardiovascular disease and stress management. However, until now, brain function monitoring technology has not been installed in the IoMT system.In this study, we used near-infrared spectroscopy (NIRS) installed in the IoMT system to evaluate whether consumers who are not medical experts can measure their own brain function correctly. In addition, the IoMT system was used to assess the long-term effects of physical exercise on physical and mental health.We studied a total of 119 healthy adults recruited from a fitness gym in Koriyama, Japan. After receiving instruction in the usage of the IoMT monitoring system including NIRS, the subjects monitored their physical and mental conditions by themselves when they visited the gym. We evaluated the relations between blood pressure (BP), pulse rate (PR), body weight (BW) and age. In addition, we evaluated the left/right asymmetry of the prefrontal cortex (PFC) at rest and BP. We calculated the laterality index at rest (LIR) for assessment of left/right asymmetry of PFC activity; a positive LIR (>0) indicates right-dominant PFC activity associated with higher stress responses, while a negative LIR (<0) indicates left-dominant PFC activity associated with lower stress responses. We studied 47 out of 119 cases who monitored their physiological conditions before and after physical exercise for 6 months for this study.The results showed that the systolic blood pressure and mean blood pressure (p < 0.05) were significantly reduced after the physical exercise for 6 months; body weight did not change significantly (p > 0.05). In addition, NIRS demonstrated that LIR changed to plus values from minus values after exercise (p < 0.01).These results show that (1) consumers who are not-medical experts can measure their own brain function correctly using NIRS; (2) after long-term physical exercise, systemic blood pressure decreased, associated with modulation of PFC activity (i.e., from right-dominant PFC activity to left-dominant activity), indicating that long-term physical exercises caused relaxation in the brain and the autonomic nervous system.


Subject(s)
Prefrontal Cortex , Spectroscopy, Near-Infrared , Adult , Humans , Spectroscopy, Near-Infrared/methods , Prefrontal Cortex/physiology , Functional Laterality/physiology , Exercise Therapy , Arrhythmias, Cardiac , Body Weight
2.
J Neurol ; 270(6): 2938-2949, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2252418

ABSTRACT

BACKGROUND: Migraine is a historically unilateral head pain condition, the cause of which is not currently known. A growing body of literature suggests individuals who experience migraine with left-sided headache ("left-sided migraine") may be distinguished from those who experience migraine with right-sided headache ("right-sided migraine"). OBJECTIVE: In this scoping review, we explore migraine unilaterality by summarizing what is currently known about left- and right-sided migraine. METHODS: Two senior medical librarians worked with the lead authors to construct and refine a set of search terms to identify studies of subjects with left- or right-sided migraine published between 1988, which is the year of publication of the first edition of the International Classification of Headache Disorders (ICHD), and December 8, 2021 (the date the searches were conducted). The following databases were searched: Medline, Embase, PsycINFO, PubMed, Cochrane Library, and Web of Science. Abstracts were loaded into Covidence review software, deduplicated, then screened by two authors to determine study eligibility. Eligible studies were those involving subjects diagnosed with migraine (according to ICHD criteria) in which the authors either: a) compared left- to right-sided migraine; or b) described (with analysis) a characteristic that differentiated the two. Data were extracted by the lead author, including ICHD version, the definition of unilateral migraine used by the authors, sample size, whether the findings were collected during or between attacks, and their key findings. The key findings were grouped into the following themes: handedness, symptoms, psychiatric assessments, cognitive testing, autonomic function, and imaging. RESULTS: After deduplication, the search yielded 5428 abstracts for screening. Of these, 179 met eligibility criteria and underwent full text review. 26 articles were included in the final analysis. All of the studies were observational. One study was performed during attack, nineteen between attacks, and six both during and between attacks. Left- and right-sided migraine were found to differ across multiple domains. In several cases, reciprocal findings were reported in left- and right-migraine. For example, both left- and right-sided migraine were associated with ipsilateral handedness, tinnitus, onset of first Parkinson's symptoms, changes in blood flow across the face, white matter hyperintensities on MRI, activation of the dorsal pons, hippocampal sclerosis, and thalamic NAA/Cho and NAA/Cr concentrations. In other cases, however, the findings were specific to one migraine laterality. For example, left-sided migraine was associated with worse quality of life, anxiety, bipolar disorder, PTSD, lower sympathetic activity, and higher parasympathetic activity. Whereas right-sided migraine was associated with poorer performance on multiple cognitive tests, a greater degree of anisocoria, changes in skin temperature, higher diastolic blood pressure, changes in blood flow through the middle cerebral and basilar arteries, and changes on EEG. CONCLUSION: Left- and right-sided migraine differed across a wide range of domains, raising the possibility that the pathophysiology of left- and right-migraine may not be identical.


Subject(s)
Headache Disorders , Migraine Disorders , Humans , Quality of Life , Functional Laterality/physiology , Headache
3.
Brain Stimul ; 13(5): 1453-1460, 2020.
Article in English | MEDLINE | ID: covidwho-704141

ABSTRACT

BACKGROUND: Neuroimaging technology is being developed to enable non-invasive mapping of the latency distribution of cortical projection pathways in white matter, and correlative clinical neurophysiological techniques would be valuable for mutual verification. Interhemispheric interaction through the corpus callosum can be measured with interhemispheric facilitation and inhibition using transcranial magnetic stimulation. OBJECTIVE: To develop a method for determining the latency distribution of the transcallosal fibers with transcranial magnetic stimulation. METHODS: We measured the precise time courses of interhemispheric facilitation and inhibition with a conditioning-test paired-pulse magnetic stimulation paradigm. The conditioning stimulus was applied to the right primary motor cortex and the test stimulus was applied to the left primary motor cortex. The interstimulus interval was set at 0.1 ms resolution. The proportions of transcallosal fibers with different conduction velocities were calculated by measuring the changes in magnitudes of interhemispheric facilitation and inhibition with interstimulus interval. RESULTS: Both interhemispheric facilitation and inhibition increased with increment in interstimulus interval. The magnitude of interhemispheric facilitation was correlated with that of interhemispheric inhibition. The latency distribution of transcallosal fibers measured with interhemispheric facilitation was also correlated with that measured with interhemispheric inhibition. CONCLUSIONS: The data can be interpreted as latency distribution of transcallosal fibers. Interhemispheric interaction measured with transcranial magnetic stimulation is a promising technique to determine the latency distribution of the transcallosal fibers. Similar techniques could be developed for other cortical pathways.


Subject(s)
Corpus Callosum/physiology , Electromyography/methods , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Adolescent , Adult , Female , Functional Laterality/physiology , Humans , Inhibition, Psychological , Male , Neural Inhibition/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL